A process-mining framework for the detection of healthcare fraud and abuse

نویسندگان

  • Wan-Shiou Yang
  • San-Yih Hwang
چکیده

People rely on government-managed health insurance systems, private health insurance systems, or both to share the expensive healthcare costs. With such an intensive need for health insurances, however, health care service providers’ fraudulent and abusive behavior has become a serious problem. In this research, we propose a data-mining framework that utilizes the concept of clinical pathways to facilitate automatic and systematic construction of an adaptable and extensible detection model. The proposed approaches have been evaluated objectively by a real-world data set gathered from the National Health Insurance (NHI) program in Taiwan. The empirical experiments show that our detection model is efficient and capable of identifying some fraudulent and abusive cases that are not detected by a manually constructed detection model. q 2005 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study

Background We aimed to identify the indicators of healthcare fraud and abuse in general physicians’ drug prescription claims, and to identify a subset of general physicians that were more likely to have committed fraud and abuse.   Methods We applied data mining approach to a major health insurance organization dataset of private sector general physicians’ prescription claims. It involved 5 ste...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

Identification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms

In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...

متن کامل

Identification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms

In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...

متن کامل

Credit Card Fraud Detection using Data mining and Statistical Methods

Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...

متن کامل

MEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection

Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2006